MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.
MECÃNICA GRACELI GERAL - QTDRC.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] * * = / G / .= / [DR] = = .= + G+ * * = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
/
/ * *= = [ ] ω , , .=
MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;
MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.
dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.
- [ G* /. ] [ [
G { f [dd]} ´[d] G* . / f [d] G* dd [G]
O ESTADO QUÂNTICO DE GRACELI
- [ G* /. ] [ [ ]
G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.
o tensor energia-momento é aquele de um campo eletromagnético,
/* = = [ ] ω , , * * ψ [ / ] .= .=
* = = [ ] , [ * * ψ / [ ] [ ] .= ] .=
* ψ [ ] /
* ψ [ ] /
Em linguagem matemática a energia térmica é definida como:
Para sistemas onde vale o princípio da equipartição da energia, o que aplica-se a vários sistemas termodinâmicos, ela pode ser expressa por:
onde KB corresponde à constante de Boltzmann, N corresponde ao número de partículas no sistema, T corresponde à temperatura absoluta do sistema e r corresponde ao número de graus de liberdade por partícula do sistema, podendo r assumir valores entre r=9 - três graus de translação, três de rotação e três de vibração - para sistemas compostos por partículas mais complexas e r=3 nos sistemas tridimensionais mais simples - compostos por partículas puntuais com três graus de translação apenas.
* / ψ [ ] =
* /ψ [ ] =
* / ψ [ ] =
* ψ [ ] =
/Onde S é a entropia, k é a constante de Boltzmann e Ω é o número de microestados possíveis para o sistema.
A ideia de entropia, uma grandeza física que encontra sua definição dentro da área da termodinâmica,[Nota 4] surgiu no seguimento de uma função criada por Clausius[4] a partir de um processo cíclico reversível. Sendo Q o calor trocado entre o sistema e sua vizinhança, e T a temperatura absoluta do sistema, em todo processo reversível a integral de curva de só depende dos estados inicial e final, sendo independente do caminho seguido. Portanto deve existir uma função de estado do sistema, S = f (P, V, T), chamada de entropia, cuja variação em um processo reversível entre os estados inicial e final é:[Nota 5]
- , sendo Q reversível
A entropia física, em sua forma clássica é dada por:
- , desde que o calor seja trocado de forma reversível
ou, quando o processo é isotérmico:
onde S é a entropia, a quantidade de calor trocado e T a temperatura em Kelvin.
Definição de Entalpia |
Comentários
Enviar um comentário